Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization
نویسندگان
چکیده
This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources.
منابع مشابه
Cross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness
This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...
متن کاملA Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm
In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...
متن کاملOutpatient appointment scheduling given individual day-dependent no-show predictions
This paper examines the combined use of predictive analytics, optimization, and overbooking to schedule outpatient appointments in the presence of no-shows. We tackle the problem of optimally overbooking appointments given no-show predictions that depend on the individual appointment characteristics and on the appointment day. The goal is maximizing the number of patients seen while minimizing ...
متن کاملMulti-objective and Scalable Heuristic Algorithm for Workflow Task Scheduling in Utility Grids
To use services transparently in a distributed environment, the Utility Grids develop a cyber-infrastructure. The parameters of the Quality of Service such as the allocation-cost and makespan have to be dealt with in order to schedule workflow application tasks in the Utility Grids. Optimization of both target parameters above is a challenge in a distributed environment and may conflict one an...
متن کاملIntegrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment
Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017